

INDIAN INSTITUTE OF PETROLEUM AND ENERGY

2nd Floor, Main Building, A.U. College of Engineering (A), Andhra University, Visakhapatnam-530 003.

B.TECH FOURTH YEAR SYLLABUS CHEMICAL ENGINEERING

Sl. No.	Course Name	L	Т	Р	Credits
1	Elective II	3	0	0	3
2	Data Analytics and AI for Process Industry	3	0	0	3
3	Project Engineering and Management	3	0	0	3
4	Process Safety	1	0	0	1
5	Industrial Training	0	0	0	2
6	Mass Transfer Lab	0	0	3	2
7	Project I	0	0	6	4
	Total	10	0	9	18

7th SEMESTER

8th SEMESTER

Sl. No.	Course Name	L	Т	Р	Credits
1	Process Integration and System Design	3	1	0	4
2	Elective III	3	0	0	3
3	Elective IV	3	0	0	3
4	Elective V	3	0	0	3
5	Project II	0	0	9	6
6	Comprehensive Viva-Voce	0	0	0	2
	Total	12	1	9	21

7th SEMESTER

Course Type	Course Code	Name of Course	L	Т	Р	Credit	
Core	BS40002	Data Analytics and AI for Process Industry	3	0	0	3	
Course	Objective						
2. To 3. To	understand vari understand and	nts to basic applications, conco ous key paradigms for machin differentiate among various m	e learnii	ng approa	aches.		
Learning	Outcomes						
 Un lea De dat De clu lea 	 Student will be able to: Understand the need for data analysis, basic techniques used in data mining and machine learning. Design a data mart or data warehouse for any organization and extract knowledge using data mining techniques. Design and implement machine learning solutions to classification, regression, and clustering problems; and be able to evaluate and interpret the results of various machine learning algorithms. Understand the importance of big data analytics, a Big Data Platform and its uses. 						
Unit No.	Тор	oics to be Covered		Learn	ing Outo	come	
	and Artificial I of AI Knowledge-App	Introduction to Data Analytics ntelligence-Some illustrations problems-Data-Information- plications of Data Analytics- the Languages of Data L, and Python.	 this course and also learn the basic (SQL, Python libraries) needed for the rest of the course. 			rn the basics	
	warehousing, C	sing: Introduction to Data oncepts of Data warehousing- paration and Visualization.				and extract	

3.	Descriptive Statistics: Central Tendency and Variability, Inferential Statistics-Probability- Central Limit Theorem-Exploratory Data Analysis-Hypothesis Testing.	Student will learn to calculate and interpret the various measures of central tendency, dispersion skewness. Analyse and compare different sets of data. Making an inference about a population from a sample.
4.	Linear Regression, Classification and Clustering Techniques: KNN, Naïve Bayes and Logistic Regression-K-means and Hierarchical Clustering-Decision Trees- Support Vector Machines-Neural Networks- Association Rule Mining.	Design and implement machine learning solutions to classification, regression, and clustering problems; and be able to evaluate and interpret the results of various machine learning algorithms.
5.	Introduction to Big Data And Hadoop; Managing Big Data: Hadoop Ecosystem tools (Sqoop and Hive).	Understand the importance of big data analytics, a Big Data Platform and its uses.

- 1. Thomas A. Runkler, Data Analytics: Models and Algorithms for Intelligent Data Analysis, Springer, 2012.
- 2. Data Mining: Concepts and Techniques (The Data Mining: Concepts and Techniques (The Morgan Kaufmann Series in Data Management Systems) by Jiawei Han (Author), Micheline Kamber (Author), Jian Pei.
- 3. Big Data and Hadoop by V. K. Jain.

References:

Wes McKinney, Python for Data Analysis, O' Relley, 2013.

- 1. Keith R. Holdaway, Harness Oil and Gas Big Data with Analytics: Optimize exploration and Production with Data Driven Models, Weily, 2014.
- 2. Robert Haining, Spatial Data Analysis, Theory and Practice, Cambridge University Press, 2003.

Course Type	Course Code	Name of Course	L	Т	Р	Credit
	CH 40001	Project Engineering and Management	3	0	0	3
Unit No.		Topics to be Covered				earning
1.	Stages of Project Implementation; Project Milestone: Planning, Analysis, Selection, Implementation; Generation and Screening of project ideas. Feasibility studies. Project Analysis and introduction to various component of Project cost and their estimation; Elements of Coat of Project, Cost of Production; Financing of projects: Debt-Equity ratio etc. Depreciation concept, Capital 					
	1 1	oject management: CPM and F nt, Social Cost benefit analy te Equity.		0		

- 1. Projects: Planning, Analysis, Selection, Financing, Implementation, and Review by P. Chandra.
- 2. Plant Design and Economics for Chemical Engineers by M. S. Peters and K. D. Timmerhaus.
- 3. Project Engineering of Process Plants by H.F. Rase.

Cours Type		Course Code	Name of Course	L	Т	Р	Credit	
Core	1	BS40003	Process Safety	1	0	0	1	
Course	e Objecti	ive						
2. 7 3. F 4. M Learn 1. U 2. F	 3. Prevent the accident. 4. Mitigate the consequences should an accident occur. Learning Outcomes Understand the different unsafe situations that can arise in a chemical plant. Forewarn their subordinates and inform their seniors about unsafe situations. 							
Unit No.	Topics	s to be Cover	red	Learning Outcome				
1.	Safety in chemical industry; Setting & layout of chemical plant. Forms of hazards: chemical, toxic, explosion, electrical, mechanical, radiation, noise hazards. Control and prevention of hazards.				ss safety be able	to read	rminologies of and appreciate rocess safety.	
2.	Asphyxiation, respiratory and skin effect of petroleum hydrocarbons, sour gases. Thresh-hold limits. Analysis of documented accidents: emission from Leaks, free jets, Pool formation and vaporization, dispersion in atmosphere, fires and explosions, boiling liquid expanding vapour explosion (BLEVE), dust explosion.			and ef Will effects Will v model Case s	fect of to underst s from ca	oxicants and spe ase studi nd source	try, metabolism in the body. ecific toxicant es. e and dispersion	

3.	Characteristics of chemical with special reference to safe storage & handling. Layout of storage, modes of transport, associated hazards control and prevention. Offshore safety. Onshore and Offshore Emergency Management Plans.	Will appreciate risks and hazards associated with storage and handling of flammable materials. Will understand offshore safety challenges. Case studies.
4.	Risk Analysis: hazard and operability (HAZOP) studies. Hazard analysis (HAZAN), fault tree analysis, consequence analysis, scenario and probabilistic assessment. Safety audit: objective, procedure, engineering standards, Factories Act and Regulation, regulating agencies. Safety and Environmental Management Systems, SEMS.	Will be able to do risk assessment. Will be familiarize with the safety audit and standards.

1. Crowl, D.A., Louvar, J. F., "Chemical Process Safety – Fundamentals with Applications". Prentice-Hall, Pearson, 2011.

Reference:

1. CCPS," Guidelines for Engineering Design for Process Safety", AIChE

Course Type	Course Code	Name of Course	L	Т	Р	Credit
Core	BS 48001	Industrial Training	0	0	0	2
Course Objective						

1. The objective of this course is to provide hands-on industrial training to students which helps them to gain practical knowledge on various industrial operations and introduce them to professional work environment.

Learning Outcomes

Upon successful completion of industrial training, students will:

- 1. Gain working knowledge on various industrial operations.
- 2. Have acquired hands-on practical training to perform different industrial operations.
- 3. Be introduced to latest technologies and advancements adopted in the industry.
- 4. Understand the technological challenges and constraints currently faced by the industry.
- 5. Understand the professional work culture practised in the industry.

Course Type	Course Code	Name of Course	L	Т	Р	Credit		
Lab	CH 40003	Mass Transfer Laboratory	0	0	3	2		
Course Ol	ojective							
To provide hands-on experience and practical knowledge of various mass transfer operations through lab scale experiments.								
Learning	Outcomes							
 At the end of the course, the student will be able to 1. Determine diffusion coefficient and interpret adsorption data. 2. Understand and operate different types of lab scale distillation apparatus. 3. Compute drying calculations and estimate drying time. 								
Unit No.	Topics to be Covered			rning O	utcome			
1.	Determination of Acetone by Stefa	f Diffusion Coefficient of A an's method.		Hands on experience on mass transfer equipment and property				
2.	T-X-Y equilibriu	ım diagram for binary mixtu	ire	estimation.				
3.	Batch Distillatio	n,						
4.	Sieve Plate Distillation,			nd				
5.	Packed Bed Distillation Column, Flooding and Loading in Packed Tower,							
6.	Water Cooling T	ower,						
7.	Liquid-Liquid E	xtraction,		-				
8.	Rotating Disk Co	ontactor,		1				

9.	Liquid-Liquid Extraction in Sieve Plate Column,
10.	Drying Characteristics of Wet Solids in Flowing Air, Rotary Drier (Hold-Up), Rotary Drier (Drying Characteristics of Wet Solids), Gas-Solid Adsorption

1. R. E. Treybal, Mass Transfer Operations, McGraw Hill Education, 2017.

Reference:

2. W. L. McCabe, J. C. Smith and P. Harriott, Unit Operations of Chemical Engineering, McGraw Hill Education, 2017.

8th SEMESTER

Course Type	Course Code	Name of Course	L	Т	Р	Credit	
Core	CH 40005	Process Integration and system Design	3	1	0	4	
Course	Objective			-			
		nded to provide basics of and Mass integration of		-	cess des	ign, use of pinch	
Learnin	g Outcomes						
 Un min Ba opt Us Us 	nimum area, and sics of optimiza imization probler e Aspen Plus for e Aspen Plus er	aphical and numerical minimum units, minimu tion, Components of ns. simulating process flow hergy analyzer and oth gn of heat exchanger net	m cost ta an optin sheets. er softv	argets in mization	heat into	egration. ms and types of	
Unit No.	Topics to be C	overed	L	Learning Outcome			
1.	Aspen HYSYS. Pinch technolog exchanger netw for maximum Breaking & Pat energy, area, n	ow Sheet in Aspen plus and SYS.Students will have unde basic concepts of concept design, technology sel integration.anetworks: analysis and design num energy recovery, Loop z Path Relaxation, targeting of ea, number of units and cost, fenergy against capital.Students will have unde basic concepts of concept design, technology sel integration.			onceptual process y selection, and		
2.	maximum ene	Tetwork Integration: Super targeting, aximum energy recovery, multiple tilities and multiple pinches, Grand omposite curve. Learn basics of process in and Pinch technology. Understand steps in chemica integration.			rocess integration gy.		

3.	Mass integration: Distillation sequences. Graphical and numerical targeting methods of mass exchanger network.	Learn the interconnection between the targets and the optimal. Concepts of Grand composite curves and how it can help in selection of multiple utilities. Total annual cost estimation of a HEN.
4.	Water integration, targeting and network design. Property integration.	Understand the steps in the design of HEN using Pinch technology and its optimization.
5.	Introduction to optimization; Separation scheme synthesis and residue curve theory; Non-linear programming, mixed integer and disjunctive programming, flow sheet optimization; scheduling of batch and continuous multistage plants. Case Studies: Refinery scheduling and blending, multisite production-planning. Supply chain optimization.	Understand the application of pinch technology to Mass integration.

- 1. Smith, R., Chemical Process Design and Integration, John Wiley & Sons (2005).
- 2. W. D. Seider, J. D. Seader, D. R. Levin and S. Widagdo, Product and Process Design Principles: Synthesis, Analysis and Design, 3rd Ed.; Wiley, New York, 2009.
- 3. Kamal I.M. Al-Malah, Aspen Plus: Chemical Engineering Applications Wiley (2016).
- 4. Linnhoff, D.W., User Guide on Process Integration for the Efficient Use of Energy, Institution of Chemical Engineers (1994).

References:

- 1. T. F. Edgar, D. M. Himmelblau and L. S. Lasdon, Optimization of Chemical Processes, 2nd Ed., McGraw Hill, New York, 2001.
- 2. G. Towler and R. K. Sinnot, Chemical Engineering Design, Elsevier, Oxford, UK.
- 3. S. Thakore and B. Bhatt, Introduction to Process Engineering Design, Tata McGraw Hill, New Delhi, India, 2008.
- 4. B. V. Babu, Process Plant Simulation, Oxford University Press, New Delhi, 2004.
- 5. Shenoy, V. U., Heat Exchanger network synthesis, Gulf Publishing (1995).
- 6. Kumar, A., Chemical Process Synthesis and Engineering Design, Tata McGraw Hill (1977).

- 7. Michael E. Hanyak Jr, Chemical Process Simulation and the Aspen HYSYS v8.3 Software Cretespace (2013).
- 8. A.K. Jana, Process Simulation and Control using Aspen. Prentice Hall India (2012).

	ELECTIVES
	1. Unconventional Hydrocarbon Resources
	2. Enhanced Oil Recovery
	3. Solar Energy, Photovoltaic Energy
Elective - II	4. Advanced Separation
	5. Advanced Material Design
	6. Waste to Energy Conversion
	1. Petroleum Engineering System Design
	2. Nuclear Wind and Geothermal Energy
Elective - III	3. Hazardous Waste Treatment and Safety Devices
	4. Analytical Techniques
	5. Offshore and Deep sea technology
	1. Natural Gas Engineering
	2. Advanced Reservoir Modelling
	3. Petroleum Refinery Engineering
Elective - IV	4. Air Pollution Control
	5. Tribology & Introduction to the Lubricants
	6. Energy Storage System
	1. Prospecting, Field Development and Asset Management
	2. Petrochemical Technology
Elective - V	3. Nano Materials for Hydrocarbon Industry
	4. Process Modelling and Simulation
	5. Hydrogen Energy

	Course Type Code		Name of (Course	L	Т	Р	Credit
Electi	ve II	PE30010	Unconventional Resour	•	3	0	0	3
Course	e Objec	tive						
1. This course is designed to give the students an overview of exploration, development and production from unconventional hydrocarbon energy resources such as Shale gas/oil, CBM, Gas hydrates, Heavy oil and Tar sand. The course also highlights technological advancement in exploration, drilling, completion and production for these unconventional hydrocarbon reservoirs.								
Learni	ng Out	comes						
2. 3.	 Potential of Unconventional Hydrocarbon Energy resources to meet the rising energy demand. Production technique and technological advancement for efficient and economical extraction from these reservoirs. Challenges associated with production and development of Unconventional Hydrocarbon Energy resources. 							onomical
Unit No.		Topics to be		I	.earnin	g Outc	ome	
1.	 CBM: Introduction, formation and properties, exploration, isotherm studies, reserve estimation, drilling and production. system, artificial lift, hydraulic fracturing of coal seam, produced water separation and disposal, surface facilities, well testing. CBM reservoir characteristics. Drilling, Completion and Production methods. from CBM reservoir. Hydraulic fracturing. and fluid for CBM reservoir. Water treatment and disposal for CBM walls 						oduction	
2.	 Internities, well testing. disposal for CBM wells. Natural Gas Hydrates: Introduction, formation and properties, thermodynamics, kinetics and phase behavior, gas extraction methodologies. disposal for CBM wells. Thermodynamic and kinetic conditions of hydrate formation. Gas hydrate reservoir characteristics and method of production. 							
3.	impor prope	tant occurrence rties, hydr	duction, geology, es, petro physical o fracturing, duction profiles.	 Shale gas character Productio reservoir. 	istics. on optin			

4. Non-Conventional Oil: Introduction to Heavy oil, extra heavy oil, Tar Sand and bituminous, oil shales; origin and occurrence worldwide, resources, reservoir characteristics, new production technologies.	Oil reservoir, Tar sand and Oil shale.
--	--

- 1. Natural gas Hydrates: A guide for engineers by John Carroll.
- 2. Coal Bed Methane: From Prospects to Pipeline by P Thakur, K Aminian and S. Schatzel.
- 3. Unconventional Gas Reservoirs: Evaluation, Appraisal, and Development by MR Islam.
- 4. Class Notes.

Reference:

1. Clathrate hydrates of Natural Gases by ED Sloan and Carolyn A Koh.

Course Type	Course Code	Name of Course	L	Τ	Р	Credit
Elective II	PE40003	Enhanced Oil Recovery	3	0	0	3

Course Objective

1. The objective of this course is to impart knowledge about different EOR techniques and its underlying mechanism on enhancing the oil recovery. This course also aims to provide knowledge on how to field implement and evaluate the performance of different EOR techniques.

Learning Outcomes

Upon successful completion of this course, students will:

- 1. Understand the importance of EOR, learn when to apply EOR, learn about different EOR types and its functions and learn about the different indicators/measures used to evaluate the EOR performance.
- 2. Learn about chemicals/agents used for different EOR techniques and its functions in enhancing oil recovery.
- 3. Learn about the underlying mechanisms that causes oil recovery in different EOR techniques.
- 4. Learn about the field implementation and performance evaluation of different EOR techniques.

Unit	Topics to be Covered	Learning Outcome
No.		
1.	Fundamentals of EOR:	
	Global and domestic necessity for EOR; India's	
	EOR policy; microscopic and macroscopic	Students will understand why
	displacement of fluids in reservoir;	EOR is required & India's effort
	mobilization of trapped oil; mobility control;	to promote EOR.
	EOR performance indicators - Capillary	
	Number, mobility ratio, breakthrough from	Students will learn on: when to
	fractional flow curves, wettability alteration	apply EOR in the field; what
	from relative permeability curves; recovery	different EOR techniques are
	factor – volumetric displacement and	applied; what different
	microscopic displacement efficiency; overview	indicators/measures are used to
	of waterflooding process; different EOR	evaluate the EOR performance;
	methods and its functions; EOR screening.	and how EOR screening is
		performed.

2.	Chemical EOR Methods – I:	
	<i>Surfactant flooding EOR</i> : Oil recovery mechanism by surfactants, surfactant types & its functions; CMC; microemulsion – types & its phase behavior; field implementation of surfactant flooding EOR; performance evaluation and screening of surfactants.	Students will learn in detail about the underlying oil recovery mechanisms involved in surfactant, polymer and ASP flooding EOR techniques.
	Polymer flooding EOR: Oil recovery mechanism by polymers; mobility control; polymer types & its behavior under reservoir conditions; field implementation of polymer flooding EOR; performance evaluation and screening of polymers for EOR.	Students will have understanding on different surfactants, polymers and alkali used in respective EOR techniques and its function in enhancing the oil recovery.
	<i>Alkaline-Surfactant-Polymer (ASP) flooding</i> <i>EOR</i> : Role of alkaline in oil recovery; oil recovery mechanism and field implementation of ASP flooding EOR; performance evaluation of ASP EOR.	Students will also learn about how EOR techniques such as surfactant, polymer and ASP flooding EOR are implemented in the field and how its performance are evaluated.
3.	Chemical EOR Methods – II:	
	<i>Low salinity water flooding (LSWF) EOR:</i> Oil recovery mechanisms – Double layer expansion, MIE process, pH alteration, fines migration, etc.; evaluation of wettability alteration from rel. permeability curves; field implementation; challenges in LSWF EOR.	About low salinity water flooding (LSWF), microbial and hybrid EOR techniques, students will learn:
	<i>Microbial EOR (MEOR):</i> Different types of microbes and bioproducts and its role in oil recovery; MEOR types and its oil recovery mechanism; field implementation and performance evaluation of MEOR; Merits and challenges in implementing MEOR.	Underlying concepts and mechanisms that causes the enhancement in oil recovery. How those EOR techniques are implemented in field and how its recovery performance is evaluated.
	<i>Hybrid EOR techniques</i> : Oil recovery mechanism of Low salinity surfactant flooding, Low salinity polymer flooding.	Current merits and challenges of those EOR techniques, which helps them to identify solutions for those challenges in the future.

4.	Gas EOR Methods & CO ₂ Sequestration:	Students will learn about:
	Gases used for EOR; Gas EOR types; MMP; immiscible gas flooding EOR; miscible flooding EOR – first contact miscibility and multiple contact miscibility – vaporization, condensation and combined drive mechanism; ternary phase diagrams for immiscible and miscible gas flooding EOR mechanisms. Field implementation and oil recovery mechanism of: continuous gas injection, CO2 flooding, WAG, SWAG, SSWAG EOR process. Necessity for CO ₂ sequestration; CO ₂ sequestration in aquifers and oil reservoirs; CO ₂ trapping mechanisms – Structural, hydrodynamic, residual, dissolution and mineral trappings. Challenges in CO ₂ sequestration.	Different gases that are conventionally used for EOR; How gases enhance the oil recovery by miscibilization and immiscibilization process; how miscibilization of injected gas with the reservoir oil happens in first and during multiple contacts between gas and oil; how oil composition ternary phase diagram evolves during first and multiple contact miscibility. Different gas EOR methods implemented in the field and its governing mechanism on enhancing the oil recovery. CO ₂ sequestration and different geo-trapping mechanisms by which CO ₂ is sequestrated in the subsurface.
5.	Thermal EOR Methods: Types of thermal EOR and its oil recovery mechanism, advantages and constraints – Hot water flooding, steam flooding, cyclic steam flooding or huff & puff steam flooding, steam assisted gravity drainage, in-situ combustion oil recovery technique.	Students will learn about the field implementation, merits and constraints of different thermal EOR methods such as Hot water flooding, steam flooding, cyclic steam flooding or huff & puff steam flooding, steam assisted gravity drainage, in-situ combustion oil recovery technique.

- 1. Enhanced Oil Recovery. SPE (2018): Don W. Green and G. Paul Willhite.
- 2. Fundamentals of Enhanced Oil Recovery. SPE (2015): Larry W. Lake, Russell Johns, Bill Rossen, Gary Pope.
- 3. Fundamental of enhanced oil and gas recovery from conventional and unconventional reservoirs (2018): Alireza Bahadori.

Reference:

- 1. Enhanced oil recovery, I: Fundamentals and analysis: E.C. Donaldson, G.V. Chilingarian, T.F. Yen.
- 2. Enhanced oil recovery, II: Processes and operations : E.C. Donaldson, G.V. Chilingarian, T.F. Yen.

Course Type	Course Code	Name of Course	L	Т	Р	Credit	
Elective II		Solar Energy, Photovoltaic Energy	3	0	0	3	
Unit No.		Topics to be Covered			Lea	rning Outcome	
1.	Introduction; Nature and availability of solar energy; Principle of operation of solar cells – materials and processing, thin film, unconventional materials and systems; Concentrators; Cells and system characteristics; Power conditioning, energy storage, and grid connection; Maximum power point tracking, PV to grid – single and three phases; Economy and Life cycle costing. Solar thermal energy. Water pumping: dc and ac pump drive; Peltier refrigeration.						

- 1. Hans S. Rauschenbach, Solar Cell Array Design Handbook: The Principles and Technology of Photovoltaic Energy Conversion. Springer (2013).
- 2. C. Hu and R.M. White, Solar Cells: From Basic to Advanced Systems. McGraw Hill (1983).

Course Type		Course Code	Name of Course	L	Т	Credit		
Elective-I	I	CH 40004	Advanced Separation	3	0 0 3			
Course	Course Objective							
app	-	ion, theory and	ng of various aspects of l design. Learn to develop		-	•	-	
Learning	g Ou	tcomes						
1. Eva 2. Ide	aluate ntify	e the design pa and model sui	tudent will be able to rameters for multicompor table membrane process f oplications of novel separa	or treatm	ent of ta		ninants.	
Unit No.	Тор	ics to be Cove	ered		Learni	ng Outcon	ne	
1.	Thermodynamics: Phase equilibria, non-ideal thermodynamic property models, activity coefficient models for the liquid phase; Single equilibrium stages: Multicomponent Liquid- Liquid, Solid- Liquid, Gas-Liquid, Vapor-Liquid- Liquid systems.Modeling and design multi-component distillation system.						-	
2.	App	lticomponent proximate r cedures.	multistage sepa methods, Equation	rations: tearing			edge about Separation	
3.	Enhanced distillation; Supercritical extraction. Vapor-liquid flow pattern and rate based models for distillation.					ced knowle rane bas tion proce expertise.	sed gas	
4.	Membrane separations; Adsorption, ion exchange, and chromatography.				memb separa	ced knowle rane base tion proce expertise.	ed liquid	

- 1. J. D. Seader and E.J. Henley, Separation Process Principles, Wiley (2006).
- 2. R.W. Baker, Membrane Technology and Applications, Second Edition, Wiley (2004).

Reference Books:

1. Charles Holland, Fundamentals of Multicomponent Distillation, McGraw Hill (1997).

Course Type	Course Code	Name of Course	L	Т	Р	Credit
Elective II	PE 40009	Advanced Material Design	3	0	0	3
Unit No.	Topics to be Covered				ning O	utcome
1.	Materials characterization using optical and neutron spectroscopies; Multiscale atomistic modeling; Use of density functional theory to predict temperature dependent thermodynamic properties of new materials e.g., complex hydrides, and kinetic processes in diffusion; Introduction to molecular simulations; Semiconductor and oxide nanostructure for optoelectronic devices, high energy solar cells; Quantum dots; Thermoelectric materials.					

- 1. Edward L. Wolf, Nanophysics and Nanotechnology. Wiley Verlag (2006).
- 2. Peter Würfel, Physics of Solar Cells: From Basic Principles to Advanced Concepts. Wiley (2009).
- 3. Charles Kittel, Introduction to Solid State Physics. Wiley (2012).
- 4. D. C. Rapaport, The Art of Molecular Dynamics Simulation. Cambridge University Press (1995).

Cours Type		Course Code	Name of Course	L	Т	Р	Credit
Elective	: II	-	Waste to Energy Conversion	3	0	0	3
Pre-Req	uisite	5:		ł	<u>I</u>		
Basic of	f heat,	thermodynamic	s, and chemical reaction engin	neering; Bi	iochemi	ical pro	cesses.
Objectiv	ves:						
te fe 2. It	 The course provides a thorough understanding of waste to energy resources, technologies and systems to convert the waste into energy (e.g., anaerobic digestion, fermentation, pyrolysis, gasification, incineration, etc.). It also provides a basic understanding of the principles underlying the modern design and operation of systems based on recent research. 						
Learnin	g Out	comes					
in 2. F tr 3. A	 Understand and learn the fundamental aspects involved during the conversion of waste into energy (e.g., anaerobic digestion, fermentation, pyrolysis, gasification, incineration, etc.) Familiar with the current research scenario associated with biochemical and thermal treatment of wastes & biomass. Acquired skills will be useful in the preparation, planning, and implementation of energy projects. 						
Unit No.		Topics	to be Covered	Le	earning	Outco	me
1.	Introduction to energy from waste: Understand energy, energy Characterizations and classification of waste balance, and acquainted w					and	
2.							
3.							

4.	Properties of fuels derived from waste to energy	Understand the properties of
	technology: Producer gas, Biogas, Ethanol, and	fuels derived from waste.
	Briquettes, Comparison of properties with	
	conventional fuels.	
5.	Energy production from waste plastics and E-	Familiar with the Energy
	waste, Cultivation of algal biomass from	production from plastics wastes
	wastewater and its application in energy	& algal biomass with Heat &
	production. Calculations: heat & mass balances.	Mass balance.
6.	Landfills: Gas generation and collection in	Learn the collection and
	landfills, Introduction to transfer stations, Case	transportation of fuel and case
	studies related to waste to energy conversion.	studies.

Books:

- 1. D.O. Hall and R.P. Overeed, Biomass-Renewable Energy, John Willy and Sons, New York. 1987.
- 2. M.M. EL-Halwagi, Biogas Technology, transfer and diffusion, Elsevier Applied science Publisher, New York, 1984.

References:

- 1. M. J. Rogoff and F. Screve, Waste-to-energy: technologies and project implementation. Academic Press., 2019.
- 2. N. B. Klinghoffer and M. J. Castaldi, Waste to energy conversion technology. Elsevier., 2013.
- 3. J.H. Harker, and J.R. Backhusrt, Fuel and Energy, Academic Press Inc.

Course Type	Course Code	Name of Course	L	Т	Р	Credit	
Elective III	PE 40010	Petroleum Engineering System Design	3	0	0	3	
Unit No.	Topic	s to be Covered		Lear	ning O	utcome	
1.	Rig Selection and design: Environmental loading and stability of rig. Design of Block and Tackle System, Design of Draw works Drum, Top drive drilling, Work over rig.			y to le and tion	select comp	drilling rig patible to the	
2.	Design Practices, practices for high Slanted wells. L	Drill string design: nd conditional Casing Deep well strings, Design n inclined, Horizontal and Liner design and setting. gn for vertical, directional ells.	Ability to design conditional casing and drill string				
3.	separators, Heat	nent: phase and three phase er treaters, Electrostatic esign of heater treaters,	Ability to design the production surface facilities				
4.	(pressure operated valves) methods. Design system; injection standa (Pressure operate analytical method	tinuous gas lift system - graphical and analytical of Intermittent gas lift single point ard tubing installation ed valves) - graphical and ds	Ability to design the production sub- surface facilities				
5.	Design of Pump Design of SRP, E	ESP and PCP system.	Ability to design the production sub- surface facilities				
6.	Design of Comp	ressor, Coil tubing unit.	Abilit	y to des	ign the	production	

- 1. Well Engineering and Construction, Hussain Rabia
- 2. Surface Productions Operations Volume 1 & 2, Ken Arnold and Maurice Stewart
- 3. Surface Production Operations, Volumes 1&2, Maurice Stewart and Ken Arnold, Elsevier,2007
- 4. Technology of Artificial Lift Methods, Kermit E. Brown, PennWell Books, 1980
- 5. Oil Well Drilling Engineering: Principles and Practice, H Rabia, Springer, 1986
- 6. Well Design: Drilling & Production: Craft, Holden & Graves.

Course Type	Course Code	Name of Course	L	Т	Р	Credit
Elective III	PE40011	Nuclear Wind and Geothermal Energy	3	0	0	3

Course Objective

- 1. The course aims to give students a basic understanding of nuclear energy concepts such as nuclear fission, fusion, nuclear reactors, nuclear fuel, and their management.
- 2. To facilitate the students to achieve a clear conceptual understanding of technical and commercial aspects of wind energy generation.
- 3. To be familiar with fundamental concepts of geothermal energy generation.

Learning Outcomes

- 1. At the end of the course, students will learn and understand fundamental concepts of nuclear energy generation which include nuclear fission, fusion, nuclear reactors, nuclear fuel, and their management.
- 2. On completion of this course, the students will be able to exhibit conceptual knowledge of the technology, economics, and viability of wind energy generation.
- 3. Students will get to know about basic concepts of geothermal energy.

UnitNo.	Topics to be Covered	LearningOutcome
	Nuclear Energy: Basic nuclear models, radioactivity, nuclear reactions – energy systems based on fission & fusion reactions.	The course aims to give students a basic understanding of nuclear
1	Reactor heat generations and removal; Nuclear Fuel cycle from Uranium / Thorium supply, enrichment.	energy concepts such as nuclear fission, fusion, nuclear reactors, nuclear
	Fuel management and waste disposal.	fuel, and their management.
	Interaction of ionizing radiation with matter, radiation detection, shielding, and effects on human health.	
2	Wind Energy: Introduction to wind resources: wind speed and terrain properties, power density; Measurement of wind speed and turbulence.	On completion of this course, the students will be able to exhibit conceptual

	Wind turbine / rotor design: Thrust, torque, speed, and power; Turbine material design and structural analysis.	knowledge of the technology, economics, and viability of wind		
	Integration of variable power production into electrical systems: Control of rotor speed, maximum power in low wind speeds, constant power in high wind speeds.	energy generation.		
	Offshore wind farm:Dynamic wind and wave loadings, grid integration, operational and maintenance strategies.			
	Cost of energyfrom wind turbine during lifetime.			
	Nature, occurrence, types and classification of geothermal fields;			
	Resource Exploration and			
3	Characterization.	Students will get to know about basic concepts of		
	Geothermal Energy Recovery.	geothermal energy.		
	Analysis of energy system proposals with reference to engineering, economic, socio-political, and environmental objectives.			

References

- 1. Murray, R. and Holbert, K.E., 2014. Nuclear energy: an introduction to the concepts, systems, and applications of nuclear processes. Elsevier.
- 2. Manwell, J.F., McGowan, J.G. and Rogers, A.L., 2010. Wind energy explained: theory, design and application. John Wiley & Sons.
- 3. Grant, M.A. and Bixley, P.F. Geothermal Reservoir Engineering. Second Edition. Elsevier. 2011.
- 4. Glassley, W.E. Geothermal Energy. Second Edition. CRC Press. 20.

Course Type	Course Code	Name of Course	L	Τ	Р	Credit
Elective III	CH 40011	Hazardous Waste Treatment and Safety Devices	3	0	0	3
Unit No.		Topics to be Covered		Lear	ning	Outcome
1.	sources, g	ntal knowledge of hazardous waste generation, identification, classificterization.				
		d safety related problems of hazantes of migration.	ardous			
	• Minimiza	tion Technologies of hazardous wa	aste.			
	• Hazardou	s waste treatment and its disposal.				
	• Regulator regulation of hazardo					
	• Clean-up					
	 Risk assessment and hazardous waste management. 					
	-	ent of hazardous waste case st and containers.	tudies:			
	• Managem	ent of hazardous nuclear waste.				

- 1. Michael D. Lagrega, Phillip L. Buckingham, Jeffrey C. Evans, Hazardous Waste Management.
- 2. Waveland Pr Inc. (2010).
- 3. S. Bhatia, Solid and Hazardous Waste Management. Atlantic (2007).
- 4. Mackenzie Davis, David Cornwell, Introduction to Environmental Engineering. McGraw Hill Indian Edition (2017)

Course Type	Course Code	Name of Course	L	Т	Р	Credit
Elective- III	CH 40006	Analytical Techniques	3			3
Course Objective						

The objective of the course is to provide technical prospectus and overview of different analytical techniques for spectroscopic, spectrometric, microscopic, thermal and chromatographic characterization of materials.

Learning Outcomes

By the end of the course, the students will be able to,

- 1. Understand the basics and application of different analytical techniques and instrumentation used in different analytical laboratories for material characterization.
- 2. Categorically interpret the fundamental properties of the material using spectroscopic, spectrometric,microscopic, thermal and chromatographic characterization instruments.

Unit No.	Topics to be Covered	Learning Outcome
1.	Spectroscopy: Introduction, Spectroscopy methods: Infrared, UV-Visible, Fluorescence, Nuclear Magnetic Resonance, Atomic Absorption.	LearnFundamentals,WorkingandInstrumentationofSpectroscopy.
2.	Spectrometry: Mass, Matrix-assisted laser desorption/ionization (MALDI).	Learn Fundamentals, Working and Instrumentation of Spectrometry.
3.	Microscopy: Introduction, Atomic Force Microscopy, Field Emission Scanning Electron Microscope with EDXS (Energy-dispersive X- ray spectroscopy), Transmission Electron Microscopy, Laser Scanning Confocal Microscopy, Confocal Raman.	Learn Fundamentals, Working and Instrumentation of Microscopy.

4.	Thermal analysis: Differential Scanning Calorimetry, Thermal Gravimetric Analysis.	Learn Fundamentals, Working and Instrumentation of Thermal Analysis techniques.
5.	Chromatography: Introduction, Thin-Layer Chromatography, Types of Column Chromatography: Affinity and Ion Exchange, Gel Permeation and HPLC, Gas Chromatography– Mass Spectrometry.	Learn Fundamentals, Working and Instrumentation of Chromatography.

- 1. Keith Wilson and John Walker, Principles and Techniques of Biochemistry and Molecular Biology, Cambridge University Press; 8th Edition, Cambridge University Press, (2018).
- D. A. Skoog and D. M. West, Fundamentals of analytical chemistry, Cengage Publishers; 9th Edition. Cengage Publishers, (2014)R. M. Silverstein, F. X. Webster, D. J. Kiemle and D. L. Bryce, Spectrometric Identification of Organic Compounds, Wiley Publishers; 8th Edition, Wiley, (2014).
- 3. D. B. Williams and C. B. Carter, Transmission electron microscopy-a text book for material science, Springer Publishers; 2nd Edition ,Springer, (2009).

Reference:

- 1. G. D. Christian, P. K. Dasgupta and K. A. Schug, Analytical Chemistry, Wiley Publishers; 7th Edition , Wiley, (2013)
- 2. Introduction to Polymer Science. Charles E. Carreher. Jr., 4th Edition, CRC Press, (2017).

Course Type	Course Code	Name of Course	L	Т	Р	Credit
Elective III		Offshore and Deep Sea Technology	3	0	0	3

Course Objective

1. The objective of the course is to introduce the students to the challenging area of petroleum industry and make them understand different offshore platforms used for drilling and production; their stability criteria and station keeping methods. The aim of this course is also to provide a clear understanding of the difference between offshore and onshore operations w.r.t. drilling, completion and production operations with the help of case studies.

Learning Outcomes

On successful completion of the course, the student shall be able to:

- 1. Explain the offshore sea environment and stability of offshore structures,
- 2. Explain applications and limitations of the various fixed and floating offshore drilling/production structures,
- 3. Explain offshore drilling, challenges and technologies,
- 4. Explain offshore production processing, transportation and storage and deep sea technologies,
- 5. Explain well abandonment methods and environmental concerns and emerging technologies,
- 6. Solve practical case studies.

Unit No.	Topics to be Covered	Learning Outcome
1	Introduction: Offshore oil and gas operations and ocean environment. Sea floor marine soils, Geotechnical aspects. Various forces acting on offshore structure; Stability of offshore structure.	Explain the offshore sea environment and stability of offshore structures.
2	Offshore Platforms: Offshore fixed platforms, mobile units, Station keeping methods like mooring & dynamic positioning system.	Explain applications and limitations of the various fixed and floating offshore drilling/production structures.
3	Offshore Drilling and Well Completion: Difference in drilling from land, from fixed platform,	Explain offshore drilling, challenges and technologies.

	Jackup, ships and semi submersibles. Use of conductors and risers. Deep sea drilling. Well completion. Deep water applications of subsea technology: drilling rig, well construction issues, cementations, casing and mud design, mud window for vertical / horizontal drilling, gas hydrates.	
4	Offshore Production and sub-sea technologies Offshore production: Oil processing platforms, water injection platforms, storage, SPM and SBM transportation and utilities. Deep water production system: Subsea transducers / sensors, control module, Wellheads and manifolds phase separators.	Explain offshore production processing, transportation and storage and deep sea technologies
5	Well abandonment, environmental concerns, Emerging deep water technologies, equipment and systems, remote operation vessels, safety of divers.	
6	Case studies Selection of offshore platform, mooring system, production facilities based on given conditions.	Solve practical case studies.

- 1. S. Laik "Offshore Petroleum Drilling and Production" CRC Press, Taylor and Francis.
- 2. Yong Bai, Qiang Bai, Subsea Engineering Handbook. Gulf Professional Publishing (2012).
- 3. James Speight, Handbook of Offshore Oil and Gas Operations. Gulf Professional Publishing (2014).
- 4. Yong Bai, Qiang Bai, Subsea Pipelines and Risers. Elsevier Science (2005).
- 5. Andrew Clennel Palmer, Roger A. King, Subsea Pipeline Engineering. PennWell Books (2008).
- **6.** Subrata Chakrabarti, Handbook of Offshore Engineering, Volume I and II. Elsevier Science (2005).

Course Type	Course Code	Name of Course	L	Т	Р	Credit
Elective - IV	PE 40003	Natural Gas Engineering	3	0	0	3

Course Objective

The objective of the course is to provide the basic knowledge of natural gas production, natural gas processing and gas transportation. This course also covers both upstream and refining process related to natural gas and along with highlighting the current status of production of natural gas through unconventional sources/technics and the utilization of natural gas in various forms and their value chains.

Learning Outcomes

Upon successful completion of this course, students should be able to:

- (a) Explain Natural Gas Significance in Global energy scenario, its composition and utilization.
- (b) Explain the Phase behavior of Natural gas and Calculate Natural Gas Properties based on its composition.
- (c) Explain the subsurface well completion methods and wellbore performance.
- (d) Design surface compression, dehydration, sweeting units required for natural gas processing.
- (e) Explain transportation, storage and metering process of natural gas and conversion of natural gas to CNG and LPG.
- (f) Explain LNG and CNG value chains.

Unit No.	Topics to be Covered	Learning Outcome
1	Introduction: Composition of Natural Gas, Utilization of Natural Gas, Natural Gas Industry, Natural Gas Reserves, Types of Natural Gas Resources, Future of the Natural Gas Industry.	Significance in Global energy
2	Properties of Natural Gas: Phase Behaviour, properties of Natural Gas, Formation Volume Factor, etc., Determination of natural gas properties such as specific gravity, pseudocritical properties, viscosity, compressibility factor, gas density, formation and expansion volume, and compressibility.	Natural gas and Calculate Natural Gas Properties based on

3	Production of Natural Gas: Overview of well Completion and wellbore Performance.	Explain the subsurface well completion methods and wellbore performance.
4	Gas Gathering system, transportation and Storage: Gas Gathering system, Transmission of Natural gas, Transportation and Measurement, Pipeline Design. Flow through pipeline, issues and solutions. Underground storage. Natural Gas Metering.	and metering process of natural gas and conversion of natural
5	Natural Gas Processing & surface facilities: Gas Compressor, Compressor design, Gas Flow Measurement, Principle of Separator, Design of Separator. Dehydration of Natural Gas, Design of Dehydration, Sweeting processes and sulphur recovery, Processing of LPG, CNG system, Conversion of gas to liquid.	dehydration, sweeting units required for natural gas
6	 Gas Supply/Distribution: City Gas/CNG development, CNG stations, Design aspects for City Gas Network and CNG Stations, Maintenance and safety of City Gas Networks and CNG equipment. LNG: Import of LNG, LNG liquefaction plant and shipping, LNG regasification, LNG Plant. 	1

- (a) B. Guo and A. Ghalambor, Natural Gas Engineering Handbook, Gulf Publishing Company, 2005.
- (b) T. Ahmed and P. D. McKinney, Advanced Reservoir Engineering, Elseveir, 2005.
- (c) D.L. Katz and R.L. Lee, Natural Gas Engineering, M

Course Type	Course Code	Name of Course	L	Т	Р	Credit	
Elective IV	PE 40012	Advanced Reservoir Modelling	3	0	0	3	
Unit No.	Topics to be Covered				Learning Outcome		
1.	Geostatistical modeling, quantification of connectivity, lithofacies, porosity, permeability using variogram, krigging techniques; Construction of heterogeneous reservoir models, constrained to well and seismic data; Upscaling and ranking; Stochastic simulation and modeling; Overview of uncertainty analysis and integrated studies; Case studies.						

1. M.J. Pyrez and C.V. Deutsch, Geostatistical Reservoir Modeling. Oxford University Press.

- 2. J. Caers, Modeling Uncertainty in Earth Sciences. Wiley Blackwell.
- 3. Matlab Reservoir Simulation Toolbox. SINTEF.
- 4. S. Cannon, Reservoir Modeling: A Practical Guide. Wiley

Course Type	Course Code	Name of Course	L	Т	Р	Credit	
Elective- IV	PE 40003	Petroleum Refinery Engineering	3	0	0	3	
Course Ob	Course Objective						
	The objective of the course is to provide technical prospectus and overview of different processes and unit operations in petroleum refineries to the students.						
Learning C	Outcomes						
asso oper 2. Obta refin	 Characterize the crude based on the assay data and interpret different parameters associated with the crude characterization and petroleum products to different unit operations in the refinery. Obtain technical information and overview of various unit operations in petroleum refinery with respective feed, products and process parameters of each unit operation in the refinery. 						
Unit No.	Торіс	es to be Covered		Lear	ning Ou	tcome	
1.	crude oil – evaluation and characterization of Crude oil: TBP and other distillation tests.			ude , ı	inderstar	e origin of ad different s and their	
2.	Petroleum refinery distillation – pre fractionation and atmospheric distillation o crude. Process design for atmospheric distillation. Stabilization of naphtha. Vacuum distillation of RCO.			nderstand ocesses o		s distillation efining.	

3.	Reforming of naphtha. Isomerization and Alkalization, Other secondary processes like Vis-breaking, Furfural/Phenol/NMP extraction, Solvent dewaxing, propane deasphalting. Delayed coking process. FCC unit.	Understanding processing of Naphtha reforming.		
4.	Hydrotreatment processes in refining: Hydro- Desulfurisation, Hydrofinishing, Hydrocraking, and Production of lube oil base stock. Residual Hydrocracking.	Understanding Hydrotreatment processes in Refining.		
5	Refinery equipment: furnaces, distillation columns, reactors, pumps, compressors and piping.	Understanding refinery Equipment Design and Environmental Impact.		
6	Elements of design of stream reformer naphtha cracker, catalytic reformer etc.			
7	Environmental impact of refineries.			

- 1. Petroleum Refinery Engineering by W. L. Nelson, 4th Edition, McGraw-Hill, (1958).
- 2. Petroleum Refining, Technology & Economics by J. H. Gray & G. E. Handwerk,5th Edition, CRC Press, (2007).
- 3. Petroleum Refinery Distillation by R. N. Watkins,2nd Edition, Gulf publishing company,(1979).
- 4. Modern Petroleum Refining Processes by B. K. B. Rao, 6th Edition, CBS Publishers,(2014).
- 5. Fundamentals of Petroleum and PetroChemical Engineering by Uttam Ray Chaudhuri, CRC Press,1st Edition,(2011).

Reference:

1. The Chemistry & Technology of Petroleum by J. G. Speight, CRC Press, 5th Edition, 2014.

Course 7	Гуре	Course Code	Name of Course	L	Т	Р	Credit	
Elective	Elective-IV CH 30009 Air		Air Pollution Control	3	0	0	3	
Course C	Course Objective							
-			technical background of air pollu eling, and air pollution control te			oring tec	hniques,	
Learnin	g Outo	comes						
environn Evaluate	Identify the major sources of air pollution and understand their adverse effects on health and environment. Evaluate the dispersion of air pollutants in the atmosphere and to develop air quality models. Choose and design control techniques for particulate and gaseous emissions.							
Unit No.	Topics to be Covered			L	earning	g Outco	ome	
1.	Introduction: Introduction to principal aspects of air pollution; History of air pollution; Sources of air pollution; Effects of major air pollutants; Current policies, standards and objectives; Air pollution legislation.Identify the major sources of air pollution and understand their adverse effects.							
2.	Meteorology and air quality modeling: Meteorology as applied to air pollution and dispersion of air pollutants; Atmospheric chemistry, Aerosol behaviour; Transport and 							
3.						es and		

4	·.	Indoor air pollution: Indoor air pollution; Personal exposure to air pollution.	Learn Indoor air pollution, causes, and their control techniques.
5	•	Economics in air pollution control: Economics and trends in air pollution control.	Economic aspects associated with air pollution.

- 1. H.S. Peavy, D. R. Rowe, G. Tchobanoglous, Environmental Engineering, Mcgraw-Hill (1985).
- 2. M.N. Rao, H.V.N. Rao, Air Pollution. McGraw Hill, Indian Edition (2017).

- 1. Richard C. Flagan, John H. Seinfeld, Fundamentals of Air Pollution Engineering. Prentice Hall (1988).
- 2. Noel de Nevers, Air Pollution Control Engineering, Waveland Press, Inc (2010).

Course Type	Course Code	Name of Course	L	Т	Р	Credit
Elective IV	-	Tribology & Introduction to the Lubricants	3	0	0	3
Unit No.		Topics to be Covered			Lear Outo	rning come
1.	 Lubricant Types of Engine O Preventive Hydraulic Properties 	 The fundamentals of lubricants business: Lubricant value chain. Types of Lubricants- Automotive, Industrial, Marine, Railroad, Air. Applications of lubricants – Automotive (Trucks, Cars, 2-Wheelers, Tractors, Gear Oils, Natural Gas. Engine Oils etc.) and Industrial (Cutting Oils, Rust Preventives, Rolling Oils, Compressor Oils, Hydraulic, Drilling Oils etc.) Properties of Lubricants. Bio-Lubricants. 				
2.	 Fundamentals of Base Oils. Type of Crude Oils. Refinery process – Brief introduction. Base Oil Groups. Properties of Base Oils. 					
3.	 Fundamentals of Additives Properties & key characteristics. Composition of additives for various applications. Additive Chemistry. Types of additives. Performance contribution of additive to Lubricants. 					
4.	 Lubricants – Automotive Understanding of Key specifications like API, JASO, ACEA. Global Specifications and Viscometrics. India- Current scenarios of Lubricants in India & Future trends. 					

5.	Lubricants-Industrial, Marine, Railroad, Air sector Indian Lubricant Market- • Current size & key players. • Growth Potential.			
6.	 New trends impacting lubricants, base Oils and additive industry BS IV to BS VI Transition by 2020. Transition towards high-quality lighter lubricants. New slate of Base Oils over next 10 years. 			
7.	 Finance and Cost optimization of Lubricants Tools and techniques: value engineering and collaborative optimization. Global best practices to drive down the total costs of ownership. 			

Course Type	Course Code	Name of Course	L	Т	Р	Credit
Elective IV		Energy Storage Systems	4	0	0	4

Course Objective

1. This course covers the necessary technical knowledge of the fundamental principles and application areas of proven technologies for energy storage solutions. And to study details of various energy storage systems along with applications and enable to identify the optimal solutions to a particular energy storage application.

Learning Outcomes

1. After successful completion of the course, students will be able to: Students can identify available technologies for energy storage and their typical application areas with their advantages and development challenges and summarize the demand for further development, potential improvements, and possibilities for innovative solutions in the energy storage subject field.

Unit No.	Topics to be Covered	Learning Outcome
1.	Scientific and engineering fundamentals of all significant energy storage methods, different types of energy storage systems (ESS), and their working principals;	Students can discuss energy storage systems and provide an understanding and appreciation of the scientific principles.
2.	Storage of energy as hydroelectric pumped storage, thermal, compressed air storage, flywheel storage, mechanical, electrostatic, and magnetic systems, phase transitions and reversible chemical reactions, organic fuels and hydrogen, and electrochemical systems;	Student will be able to relate with various upcoming energy storage technology.
3.	Energy storage technologies; basics of batteries; materials and methods; electrochemical ESS types.	They learned about the various parts of the battery and their functions.
4.	Safety issues; model codes and standards; traditional and emerging battery systems, EV and automotive technologies.	Understand how cells are used for everyday purposes: road, water, and air transport vehicles, portable and stationary use.

- 1. Fundamentals of Energy Storage by J. Jensen and B. Sorenson, Wiley-Interscience, New York.
- 2. Fundamentals and Application of Lithium-ion Battery Management in Electric Drive Vehicles by San Ping Jiang, Wiley.
- 3. Modern electric, hybrid electric, and fuel cell vehicles fundamentals, theory, and design by Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay, Ali Emadi, CRC press.

- 1. Energy Storage: Fundamentals, Materials, and Applications, by Robert Huggins, Springer Nature; 2nd ed.
- 2. Grid-Scale Energy Storage Systems and Applications, Fu-Bao Wu, Bo Yang, Ji-Lei Ye, Elsevier; 1st ed.

Course Type	Course Code	Name of Course	L	Т	Р	Credit
Elective V	PE40007	Prospecting, Field Development and Asset Management	3	0	0	3

Course Objective

The objective of this course is to impart knowledge on various operations that are performed in the field to develop, manage and improve the value of a hydrocarbon asset. This course also aims to introduce basic knowledge on petroleum economics and helps students to make decisions based on technical and economic feasibility.

Learning Outcomes

Upon successful completion of this course, the students will:

- Have a detail understanding on different activities performed in a field from exploration to abandonment phase.
- Have broad knowledge on petroleum economics and learn to make economic decisions.
- Have gained knowledge on developing, managing and improving the asset value by different reservoir management practices.

Unit No.	Topics to be Covered	Learning Outcome
1.	Life cycle of a hydrocarbon field; Field development workflow; Production scheduling; Probabilistic reserve estimation.	Students will understand about various activities that are performed during different phases (i.e., exploration, appraisal, development, production & abandonment) in life cycle of a hydrocarbon field.
		Familiarization on probabilistic reserve estimation by Monte-Carlo simulation.
2.	Project economic evaluation: Capital expenditures and Operating expenditures; cash flow statement; balance sheet; Net Present Value (NPV).	Students will learn in detail about the capital and operating expenditures that incurs during different phases of a hydrocarbon field.
		Students will learn to: prepare a cash flow statement and balance sheet; and calculate NPV.

		Students will learn on how to select a economically feasible project among multiple options based on NPV.
3.	Production profile of each field architecture; Offshore field architectures and production systems, Seabed boosting, Field processing facilities and product control; Flow assurance; Flow design of well; Reservoir depletion and field performance.	Students will learn about how production profile varies for different field architectures and how production profile for a field can be improved by technology intervention. Students will learn about how production systems, processing facilities and subsea systems are operated and managed in offshore fields.
		Students will learn about: flow assurance (i.e., it's importance, different flow assurance problems encountered during production and ways to mitigate the flow assurance); and factors and procedure to be adopted to design a well.
		Students will learn about: why and how reservoir depletion occurs recovery; how to evaluate the production performance of a field during depletion phase.
4.	EOR screening; Production optimization and integrated asset modeling; Data processing and management; Reservoir management case studies.	Students will learn about: How to select a suitable EOR for a field by manual and computational methods.
		How hydrocarbon production is optimized and how integrated asset modeling is performed; Different data available and how it can be effectively used for improving the asset value.

	Ways to manage and improve the
	asset value by analyzing different
	cases/fields across the world.

- 1. Oil and Gas Exploration and Production: Reserves, Costs, Contracts. Technip 2011: Nadine Bret-Rouzaut, Jean-Pierre Favennec.
- 2. Real Time Reservoir Management. SPE (2012): K. Shah, O. Izgec,
- 3. Integrated Reservoir Asset Management: Principles and Best Practices: J. Fanchi,

- 1. Integrated Petroleum Reservoir Management: A Team Approach: Abdus Satter, Ganesh Thakur.
- 2. Advanced Reservoir Management and Engineering: T. Ahmed, D. Nathan Meehan.

Course Type	Course Code	Name of Course	L	Τ	Р	Credit	
Elective V	BS 40004	Petrochemical Technology	3	0	0	3	
Unit No.		Topics to be Covered		Learning Outcome			
1.	 Survey of petrochemical industry; Availability of different feed stocks; Production, purification and separation of feed stocks; Chemicals from methane; Production and utilization of synthesis gas, oxo reactions, etc.; Production of and chemicals from acetylene; Naphtha cracking; 						
	• Chemicals compounds utilization;						
	 Catalytic rearomatics; fibres, deten coke; 	hetic					
	• Integration Petrochemic	and					

- 1. Hydrocarbon Chemistry by G. A. Olah and A. Molna.
- 2. A. Text on Petrochemicals by B. K. B. Rao.
- 3. Petroleum Refining, Technology and Economics by J. H. Gary and G. E. Handwerk.

Reference Books:

- 1. Industrial Organic Chemicals by H. A. Wittcoff and B. G. Reuben.
- 2. Handbook of Petrochemicals and processes by G. M. Wells.

Cour Typ		Course Code	Name of Course	L	T	Р	Credit		
Electiv	ve V	CH 40008	Nano Materials for Hydrocarbon Industry	3	0	0	3		
Cours	e Obj	jective				-			
		rse aims to train s ion in hydrocarbo	tudents to understand the conce n Industry.	pt Nanoı	nateria	al scie	nce and their		
Learn	ing O	outcomes							
Ch • Stu	aracte	erization and Prop will be well ward	d the concept and science b perties. e about the application of nanor						
Unit No.	Тор	ics to be Covered	1	Learning Outcome					
1.	Introduction to metallic nanoparticles, metal oxide Students will be acquainted nanoparticles, carbon nanotubes, magnetic with the nanomaterials world. nanoparticles, nanoporous materials.					-			
2.	Synthesis: Chemical, electrochemical, thin films – CVD, PVD, Langmuir-Blodgett, mechanical (attrition), sol-gel, nanolithography.Students will know the design and synthesis routes for nanomaterial production.				routes for				
3.	Functionalization: Ligand incorporation, biomolecule conjugation, polymer coating.				Students will be acquainted with various functionalization techniques.				
4.	Physical and chemical properties at nanoscale; Nanomaterial characterization: SEM, TEM, AFM, scanning probe microscopy, scanning tunneling microscopy, diffraction and scattering techniques, vibrational spectroscopy.Students will be acquainted with various characterization techniques.				-				
5	Use of nanomaterials in exploration and reservoir characterization, drilling, cementing, production, stimulation, petroleum refining, fuel production, and chemical sensing, Use of nanomaterials in lubricants.Students will be well awar about the application of nanomaterials in Hydrocarbo Industry.					lication of			

 Dieter Vollath, Nanomaterials: An Introduction to Synthesis, Properties and Applications. Wiley VCH (2013). 2. Ratna Tantra, Nanomaterial Characterization: An Introduction. Wiley (2016).

- 1. Dieter Vollath, Nanoparticles Nanocomposites Nanomaterials: An Introduction for Beginners. Wiley VCH (2013).
- 2. Daniel L. Fedlheim and Colby A. Foss, Metal Nanoparticles: Synthesis, Characterization, and Applications. CRC Press (2001).

Course Type	Course Code	Name of Course	L	Т	Р	Credits
Elective V	PE 40013	Process Modelling and Simulation	3	0	0	3

Course Objective

This course is intended to learn development of mathematical models using first principles and data for different chemical engineering and allied processes and also to apply numerical methods for solving the developed mathematical models. Further, different simulation tools will be demonstrated.

Learning Outcomes

At the end of the course, the student will be able to:

- 1. Apply conservation laws for different chemical engineering and allied processes.
- 2. Analyze ill-conditionality, stiffness and nature of steady states.
- 3. Develop empirical and grey-box models.
- 4. Solve ODEs, PDEs, DAEs.
- 5. Use different software tools for simulation.

TT . •4		
Unit	Topics to be Covered	Learning Outcomes
No.		
1.	Introduction to modeling, a systematic approach	Apply conservation laws for
	to model building, classification of models.	different chemical engineering
	Conservation principles, thermodynamic	and allied processes.
	principles of process systems.	
2.	Development of steady state and dynamic lumped	Apply conservation laws for
	and distributed parameter models based on first	different chemical engineering
	principles. Analysis of ill-conditioned systems.	and allied processes, Analyze
		ill-conditionality, stiffness and
		nature of steady states.
3.	Development of grey box models. Empirical	Develop empirical and grey-
	model building. Regression. Statistical model	box models.
	calibration and validation. Population balance	
	models. Examples.	
4.	Solution strategies for lumped parameter models.	Solve ODEs, DAEs, Use
	Stiff differential equations. Solution methods for	different software tools for
	initial value and boundary value problems. Euler's	simulation.
	method. R-K method, shooting method, finite	
	difference methods. Solving the problems using	
	MATLAB/SCILAB.	

5	Solution strategies for distributed parameter	Solve PDEs, Use different
	models. Solving parabolic, elliptic and hyperbolic	software tools for simulation.
	partial differential equations. Finite element and	
	finite volume methods.	

- 1. Chemical Process Modelling and Computer Simulation, Amiya K. Jana, Prentice Hall, 2011, 2nd Edition.
- 2. Process Modelling and Simulation in Chemical, Biochemical and Environmental Engineering, Ashok Kumar Verma, CRC Press, 2014.
- 3. Process Modelling, Simulation and control for Chemical Engineers, William L. Luyben, McGraw-Hill Publishing Company, 1996, 2nd Edition.

- 1. Process Modelling and Model Analysis, K. M. Hangos and I. T. Cameron, Academic Press, 2001.
- 2. Mathematical Modelling and Simulation in Chemical Engineering, M. Chidambaram, Cambridge University Press, 2018.

Course Type	Course Code	Name of Course		L	Т	Р	Credit		
Elective V	V		3	0	0	3			
Course Ob	Course Objective								
This course has essential theoretical knowledge to recognize the methods of hydrogen production, purification, storage, and utilization. And to study details of various hydrogen production processes and storage systems along with applications and enable to identify the optimal solutions to a particular hydrogen storage application.									
Learning	Outcomes								
On successful completion of this course, students: Have a basic knowledge of Hydrogen Energy, Properties of Hydrogen, Production methods and purification, Storage methods, Safety, Environmental benefits, and Applications in the Hydrogen Economy.									
Unit No.	Торі	cs to be Covered	Learning Outcome						
1.		ydrogen energy systems, s of production, storage, and	To provide comprehensive and logical knowledge of hydrogen production, storage, and utilization.						
2.	reformation, gas oxidative and no green hydrogen	ction processes, steam ification, pyrolysis, n-oxidative processes, production using nuclear wables- wind, biomass,	To know about the chemical and physical foundations of hydrogen fuel production.						
3.	compressed storage	purification; storage, age, liquid-state storage, ge, different materials for , Metal hydride storage, e storage;	To design and develop a suitable hydrogen storage system to be used along with different types of the cell system.						
4.	Hydrogen sensin hydrogen safety.	g, hydrogen utilization,	To minimize environmental hazards associated with the use of hydrogen storage technology.						

- 1. Michael Hirscher, Hand Book of Hydrogen Storage, McGraw-Hill Professional.
- 2. J O'M Bockris, Energy options: Real Economics and the Solar Hydrogen System, Halsted Press and London publisher, 1980.

3. M.K.G. Babu, K.A. Subramanian, Alternative Transportation Fuels: Utilization in Combustion Engines, CRC Press, 2013.

- 1. M. Ball and M. Wietschel, The Hydrogen Economy Opportunities and Challenges, Cambridge University Press, 2009.
- 2. S.A Sherif, D. Yogi Goswami, E.K. Lee Stefanakos, Aldo Steinfeld, Hand Book of Hydrogen Energy CRC Press 2014